[Home]Quantum mechanics/Talk

HomePage | Quantum mechanics | Recent Changes | Preferences

Showing revision 3
Quantum mechanics has provoked a strong philosophical debate. The fundamental problem is that causality and determinism is lost: while the probability distributions evolve according to a well established deterministic law, the values of the observables themselves do not. Because of this, Albert Einstein held that quantum mechanics must be incomplete.
It would be helpful to try to give some basic explanation of why Einstein's view is widely held to be incorrect--his view seems like common sense, but common sense is often wrong, as theoretical physicists enjoy pointing out. So, why is it wrong, in this case? By the way, please don't answer this question on the /Talk page--please put the answer on the QM page. Thanks in advance! --LMS

It's not entirely clear that Einstein was wrong on all counts, just wrong on at least one of them. :-) The Bell's-inequality experiments of Aspect prove beyond any doubt that either (1) Observable effects exist that cannot be deterministic results of inherent properties of matter; or (2) The universe is non-local; i.e., physical effects can propogate faster than light. Nobody knows which. --LDC

It proves neither, since neither is the case in the multi-universe interpretation. --JG

I'll put a discussion of these issues on the Copenhagen interpretation page. --AxelBoldt


Having reviewed more of the literature on this topic, I concede that I was incorrect, so I'm removing the discussion regarding electron clouds and acknowledging that the current description in the article is correct -- Matt Stoker


Perhaps some mention of the problem that inspired Planck to invent Quantum Mechanics is in order. IIRC, physicists were trying to figure out what electromagnetic waves were in an oven that had a certain amount of heat in it. They knew that an integer multiple of the wavelength of the light in the oven would have to equal one of the dimensions of the oven, but every time they tried to figure it out, they ended up concluding that the oven had infinite energy in it. Planck was able to find the answer by assume that the energy in an electromagnetic wave was quantised such that E ∝ f. This went directly counter to the classical mechanics assumtion that E ∝ Amplitude.


HomePage | Quantum mechanics | Recent Changes | Preferences
This page is read-only | View other revisions | View current revision
Edited October 13, 2001 11:31 am by Stokerm (diff)
Search: