Okay, I found a page that claims: 1884: Oliver Heaviside expresses Maxwell's Equations as we know them today ie: http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Heaviside.html therefore this validates my recollection. (it said Maxwell's equations were originally 20 equations in 20 variables instead of two equations in two variables) Now I can go to sleep...
Also, 4 Maxwell's equations with 4 variables (time, charge density, the electric field, and the magnetic field). Where do you get two?
Nice idea, but this article needs to remain focused on these equations because that is all it is for. A better place for that connection would be in an electromagnetic radiation/waves/light article. --Initial Author
Oh, there's also a minor oversight: ε is used as the permittivity and also as the electromotive force around a loop. --unknown
EMF is supposed to be a scripty E. Anyone know how to do one of those? --unknown
I understand that, but there are only so many symbols in the english language. I used ε instead of ΔV or ΔφE for three reasons: first, φ and/or V are used in electrostatics to represent the electric potential as a scalar function in space, and any closed loop integral over a continuous scalar function in space has to be zero; second, ε is the closest thing (almost exactly the same, in fact, to the scripty thing described above); and third, the limited number of symbols means that what the symbol represents has to be labeled each time anyway. To give you another couple of overloaded characters in physics: p represents both momentum and pressure (in mathematics p also represents the period of the wave); v is used for velocity, volume, and voltage, velocity is generally lower case, volume is upper, and voltage is usually upper if it's constant and lower if it's time varying. I've really beaten that horse to death, but I wanted to make it crystal clear that I had considered the conflict when I wrote the article. --Initial Author
And one last thing: I don't quite understand why the last paragraph mentions cgs versus mks units? How could the units possible change the equations? --AxelBoldt
If you use kg for mass, m/s2 for acceleration, and lbs for force, Newton's second law takes on the form F=kma, k a constant. Choosing a better system makes k go away, simplifying the equation. It's the same deal with CGS and MKS, a lot of the constants go away in the former system. --Unknown
Precisely, I'll add more to the main page presently, but it's all about clairity. --Initial Author