[Home]Category theory

HomePage | Recent Changes | Preferences

Showing revision 25
Category theory is a mathematical theory that deals in an abstract way with mathematical structures and relationships between them. Although originally mainly developed in the context of algebraic geometry, [algebraic topology]? and [universal algebra]?, it is now used in various branches of mathematics and is by some even considered as a better foundation of mathematics than set theory.

A category attempts to capture the essense of a class of related mathematical structures, for instance the class of groups. Instead of focusing on the individual objects (groups) as has been done traditionally, the morphisms, i.e. the structure preserving maps between these objects, are emphasized. In the example of groups, these would be the [group homomorphisms]?. Then it becomes possible to relate different categories by functors, generalizations of functions which associate to every object of one category an object of another category and to every morphism in the first category a morphism in the second. Very commonly, certain "natural constructions", such as the fundamental group, can be expressed as functors. Furthermore, different such constructions are often "naturally related" which leads to the concept of [natural transformation]?, a way to "map" one functor to another.

Categories

Definition:

A category consists of: and the following typing axioms hold: and the following equality axioms hold:

If the collections in question are sets, the category is said to be small. Many important categories are not small.

Examples:

Each category is presented in terms of its objects and its morphisms.

Functors

Functors are structure-preserving maps between categories.

Definition

A functor is a map F between categories C and D such that

Examples

Here we give a nontrivial example of a functor. There is the category of Hausdorff topological spaces. A topological space is a set together with a family of open sets. A morphism of topological spaces is a continuous function, that is, a function f from X to Y (topological spaces) for which the preimage? of any open set is also open. An isomorphism of topological spaces is a continuous, surjective function with an inverse that is also continuous. To say that the topological space X is Hausdorff is to say that, if x, y are in X, then there are open sets U, V with x in U and y in V and U and V do not intersect.

There is also the category of groups. A group G is a set together with a multiplication law, a unit and inverses. That is, if x, y are in G, then the product x · y is also in G. Further, there is a distinguished element e in G so that, for any x in G, ex = xe = x. Lastly, for each element x in G, there is an element y in G so that xy = yx = e. Morphisms or homomorphisms are functions f such that f(xy)=f(x)f(y). Isomorphisms are surjective, injective homomorphisms.

Given a topological space X and a distinguished point x in X, we can create a group. Let f be a continuous function from the unit interval [0,1] into X so that f(0) = f(1) = x. (Equivalently, f is a continuous map from the unit circle in the complex plane so that f(1) = x.) We call such a function a loop in X. If f and g are loops in X, we can glue them together by defining h(t) = f(2t) when t is in [0,0.5] and h(t) = g(2(t - 0.5)) when t is in [0.5,1]. It is easy to check that h is again a loop. If there is a continuous map F(x,t) from [0,1] × [0,1] to X so that f(t) = F(0,t) is a loop and g(t) = F(1,t) are also loops then f and g are said to be equivalent. It can be checked that this defines an honest to goodness equivalence relation. Our composition rule survives this process. Now, in addition, we can see that we have an identity element e(t) = x (a constant map) and further that every loop has an inverse. Indeed, if f(t) is a loop then f(1 - t) is its inverse. The set of equivalence classes of loops thus forms a group (the fundamental group of X). One may check that the map from the category of Hausdorff topological spaces with a distinguished point to the category of groups is functorial: a topological (homo/iso)morphism will naturally correspond to a group (homo/iso)morphism.


Related topics


HomePage | Recent Changes | Preferences
This page is read-only | View other revisions | View current revision
Edited November 1, 2001 2:18 am by 63.162.153.xxx (diff)
Search: