[Home]Phase

HomePage | Recent Changes | Preferences

Difference (from prior major revision) (author diff)

Changed: 4,21c4,5

^
| **X** **X**
|* ** ** **
| * * *
A |---------Z-----------Z-----------Z-----------Z------>
| * * * *
| ** ** ** **
| **Y** **Y**
|
| **X** **X**
|* ** ** **
| * * *
B |---------Z-----------Z-----------Z-----------Z------>
| * * * *
| ** ** ** **
| **Y** **Y**


http://meta.wikipedia.com/upload/inphase.png

Changed: 31,48c15

^
| **X** **X**
|* ** ** **
| * * *
A |---------Z-----------Z-----------Z-----------Z------>
| * * * *
| ** ** ** **
| **Y** **Y**
|
| **X** **X**
| ** ** ** **
| * * * *
C |---------Z-----------Z-----------Z-----------Z------>
| * * *
|* ** ** **
| **Y** **Y**

http://meta.wikipedia.com/upload/outphase.png

Changed: 58,75c25

^
| **X** **X**
|* ** ** **
| * * *
A |---------Z-----------Z-----------Z-----------Z------>
| * * * *
| ** ** ** **
| **Y** **Y**
|
| **X** **X**
| ** ** ** **
| * * * *
D |---Z-----------Z-----------Z-----------Z------------>
| * * * *
|** ** ** **
| **Y** **Y

http://meta.wikipedia.com/upload/quadwave.png

In the context of physics, phase refers to the relative position of a feature (such as a peak or a trough) of a waveform, compared to that same feature on a second waveform. The phase may be measured as a time, distance, a fraction of the wavelength, or as an angle in radians.

Consider the two waves A and B in this diagram:

Both A and B have the same amplitude? and the same wavelength.

It's apparent that the positions of the peaks (X), troughs (Y) and zero-crossing points (Z) of both waves all coincide. The phase difference of the waves is thus zero, or, the waves are said to be in-phase.

If the two in-phase waves A and B are added together (for instance, if they are two light waves shining on the same spot), the result will be a third wave of the same wavelength as A and B, but with twice the amplitude?. This is known as constructive interference.

Now consider waves A and C:

A and C are also of the same amplitude? and wavelength. However, it can be seen that although the zero-crossing points (Y) are coincident between A and C, the positions of the peaks and troughs are reversed, that is and X on A becomes a Y on B, and vice versa. In this case, the two waves are said to be out-of-phase, or the phase difference of the two waves is π radians, or half the wavelength (λ/2).

Should waves A and C be added, the result a wave of zero amplitude?. This is called destructive interference.

Also consider waves A and D:

In this situation, a peak (X) on wave A becomes a zero-crossing point (Z) on B, a zero-point becomes a peak, and so on. The waves A and D can be said to be in quadrature, or exactly π/2, or λ/4 out of phase. This is the same relation that the mathematical functions sine(x) and cosine(x) have.

See also interferometer.


/Talk?

HomePage | Recent Changes | Preferences
This page is read-only | View other revisions
Last edited November 25, 2001 7:23 am by Sodium (diff)
Search: