In the particular case of Euclidean 3-space, some examples of convex sets are the Archimedean solids and the Platonic solids. The Kepler solids are examples of non-convex sets. |
The convex subsets of R (the set of real numbers) are simply the intervals of R. Some examples of convex subsets of Euclidean 3-space are the Archimedean solids and the Platonic solids. The Kepler solids are examples of non-convex sets. |
In mathematics, convexity can be defined for subsets of any real or complex vector space. Such a subset C is said to be convex if, for all x and y in C and all t in the interval [0,1], the point tx + (1-t)y is in C.
The convex subsets of R (the set of real numbers) are simply the intervals of R. Some examples of convex subsets of Euclidean 3-space are the Archimedean solids and the Platonic solids. The Kepler solids are examples of non-convex sets.
The intersection of any collection of convex sets is itself convex, so the convex subsets of a (real or complex) vector space form a complete lattice. This also means that any subset A of the vector space is contained within a smallest convex set (called the convex hull of A), namely the intersection of all convex sets containing A.