Here is a table that shows how the two functions compare:
x | π(x) | x/ln(x) |
---|---|---|
1,000 | 168 | 145 |
10,000 | 1,229 | 1,086 |
100,000 | 9,592 | 8,686 |
1,000,000 | 78,498 | 72,382 |
10,000,000 | 664,579 | 620,420 |
100,000,000 | 5,761,455 | 5,428,681 |
An even better approximation is given by Gauss' formula
x π(x) ~ ∫ 1/ln(x) dx 2As a consequence of the prime number theorem, one get an asymptotic expression for the n-th prime number p(n):
One can also derive the probability that a random number n is prime: it is 1/ln(n).
The theorem was conjectured by [Adrien-Marie Legendre]? in 1798 and first proved by Hadamard and de la Vallée Poussin in 1896. The proof used methods from complex analysis, specifically the Riemann zeta function. Nowadays, so-called "elementary" proofs are available that only use number theoretic means.
Because of the connection between the Riemann zeta function and π(x), the Riemann hypothesis has considerable importance in number theory: if established, it would yield a far better estimate of the error involved in the prime number theorem than is available today.