[Home]History of Euclidean space

HomePage | Recent Changes | Preferences

Revision 6 . . (edit) September 25, 2001 12:41 pm by AxelBoldt
Revision 5 . . August 28, 2001 10:42 pm by Zundark [mention Euclidean plane]
Revision 4 . . August 28, 2001 3:16 am by Zundark [invariance of domain, etc.]
  

Difference (from prior major revision) (minor diff, author diff)

Changed: 3c3
The term "n-dimensional Euclidean space" is usually abbreviated to "Euclidean n-space", or even just "n-space". Euclidean n-space is denoted by E n, although Rn is also used (with the metric being understood).
The term "n-dimensional Euclidean space" is usually abbreviated to "Euclidean n-space", or even just "n-space". Euclidean n-space is denoted by E n, although Rn is also used (with the metric being understood). E 2 is called the Euclidean plane.

Changed: 5c5
By definition, E n is a metric space, and is therefore also a topological space. It is the prototypical example of an n-manifold, and is in fact a differentiable n-manifold. For n ≠ 4, any differentiable n-manifold that is homeomorphic to E n is also diffeomorphic to it. The surprising fact that this is not also true for n = 4 was proved by Simon Donaldson in 1982; the counterexamples are called exotic (or fake) 4-spaces.
By definition, E n is a metric space, and is therefore also a topological space. It is the prototypical example of an n-manifold, and is in fact a differentiable n-manifold. For n ≠ 4, any differentiable n-manifold that is homeomorphic to E n is also diffeomorphic to it. The surprising fact that this is not also true for n = 4 was proved by Simon Donaldson in 1982; the counterexamples are called exotic (or fake) 4-spaces.

HomePage | Recent Changes | Preferences
Search: