[Home]Double planet/Talk

HomePage | Double planet | Recent Changes | Preferences

Not having actually read this article, I see that two instances of the phrase "I propose" occur and that it's signed. Wikipedia isn't the place to make proposals (i.e., to do original research). To do so is to ask the people here to act as peer reviewers and, worse, to pass off your proposals as the state-of-the-art research in the field. For all I know about you (Bryan Erickson), they might be, but I doubt it. But I feel strongly enough about this particular (proposed) rule that, on Nupedia, a very distinguished Classics editor quit when I refused to allow him to expound his latest theories on something or other. I'm not in the same position of authority on Wikipedia (because this is a wiki :-) ) but I do tend to get put out by this sort of thing nonetheless.

Beyond these concerns about the propriety of original research, there is also the very generally accepted rule about writing from the NeutralPointOfView.

So, how might we rewrite this article so as to remove idiosyncratic proposals? --Larry Sanger


Frankly, the whole thing is just an argument about the use of terminology--it belongs in a style guide for publications on Astronomy or something. I don't see that it has any purpose in an encyclopedia at all. An article entitled "double planet" should simply mention that the definition is necessarily vague, and then list a few and describe them. I want to learn something about double planets, not something about what astronomers argue about. --LDC
Following are the problematic paragraphs:

I propose two different quantitative analyses that could draw a sharp distinction between double planets and planet-moon systems. The first is the Center of Mass Method. If the center of mass of the two bodies lies under the surface of one body, then that body will be defined as a planet and the other body will be defined as a moon. This method has the following advantages: it's relatively easy to perform when the masses and volumes of the two planets are observable; it is logically sensible; and it provides a definite demarcation between the two classes of two-body systems in almost all cases. The disadvantages are: in a few hypothetical cases, the center of mass might lie almost exactly on the surface of the more massive body, so that the center of mass is below the surface when the maybe-moon happens to be passing over mountain ranges but above the surface when the maybe-moon is above a valley; this would require further definition of exactly where the surface is, is it sea level, or if the planet is among the great majority that don't have seas, is it above the "datum" or average radius; secondly, this method requires observation not only of the masses of the two bodies but also of their radii; in the near future, as observations of planets in other star systems improve, we will reach the point of measuring masses and tracing orbital paths of planets but remaining capable of imaging them only as individual pixels. This would be under the level of technology embodied in NASA's Terrestrial Planet Finder telescope. It will be a long time after that before our data gathering technology achieves the ability to make reliable measurements of the radii of these planets. Therefore, the Center of Mass Method for distinguishing double planet systems and planet-moon systems, while working fine for our own Solar System, would be face more difficulty for other star systems.

Which leads to the second analysis, the Lagrange Method. If the mass ratio between the two bodies is at least about 0.081, the 4th and 5th Lagrange points of the two-body system do not provide a stable equilibrium. If the ratio is less than that amount, Lagrange 4 and 5 do provide stable equilibrium. This provides a distinction that could be used to define the cutoff between double planet systems and planet-moon systems. It has the advantage that it requires only determination of the masses of the two bodies, which could be accomplished for extra-solar planets at a much lower level of technology; we already measure the minimum mass of extrasolar bodies, and with observations of their orbital paths, even with only single-pixel resolution, as with the proposed NASA Terrestrial Planet Finder orbiting telescope, we will be able to define their masses pretty well. This method also provides a definite cutoff between the two categories. However, it has the drawback of providing a less logically compelling definition. Therefore, I propose that the Center of Mass Method be adapted as the official analysis. It could still be applied, albeit with less precision, to extrasolar planets under the Terrestrial Planet Finder level of technology, if we use a model of a planet's density based on its mass and the semimajor axis - average distance - from its host star. This density model would provide a good prediction of the planet's radius, which could be used together with measured mass to determine whether the center of mass is beneath the surface of the larger mass or is in space between the two bodies.

Coming back to our solar system, under the preferred Center of Mass method, Pluto and Charon are clearly double planets, but Earth and its Moon are not; the center of mass is almost 2000 kilometers, or about 30%, of the way to the center of the Earth.

--Bryan Erickson


HomePage | Double planet | Recent Changes | Preferences
This page is read-only | View other revisions
Last edited September 15, 2001 2:41 am by Larry Sanger (diff)
Search: